3.1968 \(\int \frac{(d+e x)^2}{(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\)

Optimal. Leaf size=116 \[ \frac{2 e \left (a e^2+c d^2+2 c d e x\right )}{3 c d \left (c d^2-a e^2\right )^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{2 (d+e x)}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

[Out]

(-2*(d + e*x))/(3*c*d*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) + (2*e*(c*d^2 + a*e^2 + 2*c*d*e*x))/(3*c*
d*(c*d^2 - a*e^2)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

________________________________________________________________________________________

Rubi [A]  time = 0.0432223, antiderivative size = 116, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 37, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.054, Rules used = {652, 613} \[ \frac{2 e \left (a e^2+c d^2+2 c d e x\right )}{3 c d \left (c d^2-a e^2\right )^2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}}-\frac{2 (d+e x)}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[(d + e*x)^2/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x))/(3*c*d*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2)) + (2*e*(c*d^2 + a*e^2 + 2*c*d*e*x))/(3*c*
d*(c*d^2 - a*e^2)^2*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])

Rule 652

Int[((d_.) + (e_.)*(x_))^2*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)*(a + b*x +
 c*x^2)^(p + 1))/(c*(p + 1)), x] - Dist[(e^2*(p + 2))/(c*(p + 1)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /; Fr
eeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && LtQ[p,
-1]

Rule 613

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[(-2*(b + 2*c*x))/((b^2 - 4*a*c)*Sqrt[a + b*x
 + c*x^2]), x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rubi steps

\begin{align*} \int \frac{(d+e x)^2}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx &=-\frac{2 (d+e x)}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}-\frac{e \int \frac{1}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx}{3 c d}\\ &=-\frac{2 (d+e x)}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}+\frac{2 e \left (c d^2+a e^2+2 c d e x\right )}{3 c d \left (c d^2-a e^2\right )^2 \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}\\ \end{align*}

Mathematica [A]  time = 0.032645, size = 59, normalized size = 0.51 \[ -\frac{2 (d+e x)^2 \left (c d (d-2 e x)-3 a e^2\right )}{3 \left (c d^2-a e^2\right )^2 ((d+e x) (a e+c d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(d + e*x)^2/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x)^2*(-3*a*e^2 + c*d*(d - 2*e*x)))/(3*(c*d^2 - a*e^2)^2*((a*e + c*d*x)*(d + e*x))^(3/2))

________________________________________________________________________________________

Maple [A]  time = 0.045, size = 90, normalized size = 0.8 \begin{align*}{\frac{ \left ( 2\,cdx+2\,ae \right ) \left ( ex+d \right ) ^{3} \left ( 2\,cdex+3\,a{e}^{2}-c{d}^{2} \right ) }{3\,{a}^{2}{e}^{4}-6\,ac{d}^{2}{e}^{2}+3\,{c}^{2}{d}^{4}} \left ( cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade \right ) ^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x)

[Out]

2/3*(c*d*x+a*e)*(e*x+d)^3*(2*c*d*e*x+3*a*e^2-c*d^2)/(a^2*e^4-2*a*c*d^2*e^2+c^2*d^4)/(c*d*e*x^2+a*e^2*x+c*d^2*x
+a*d*e)^(5/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 6.31967, size = 312, normalized size = 2.69 \begin{align*} \frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (2 \, c d e x - c d^{2} + 3 \, a e^{2}\right )}}{3 \,{\left (a^{2} c^{2} d^{4} e^{2} - 2 \, a^{3} c d^{2} e^{4} + a^{4} e^{6} +{\left (c^{4} d^{6} - 2 \, a c^{3} d^{4} e^{2} + a^{2} c^{2} d^{2} e^{4}\right )} x^{2} + 2 \,{\left (a c^{3} d^{5} e - 2 \, a^{2} c^{2} d^{3} e^{3} + a^{3} c d e^{5}\right )} x\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="fricas")

[Out]

2/3*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(2*c*d*e*x - c*d^2 + 3*a*e^2)/(a^2*c^2*d^4*e^2 - 2*a^3*c*d^2*e
^4 + a^4*e^6 + (c^4*d^6 - 2*a*c^3*d^4*e^2 + a^2*c^2*d^2*e^4)*x^2 + 2*(a*c^3*d^5*e - 2*a^2*c^2*d^3*e^3 + a^3*c*
d*e^5)*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**2/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.2967, size = 521, normalized size = 4.49 \begin{align*} \frac{2 \,{\left ({\left ({\left (\frac{2 \,{\left (c^{3} d^{5} e^{3} - 2 \, a c^{2} d^{3} e^{5} + a^{2} c d e^{7}\right )} x}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}} + \frac{3 \,{\left (c^{3} d^{6} e^{2} - a c^{2} d^{4} e^{4} - a^{2} c d^{2} e^{6} + a^{3} e^{8}\right )}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )} x + \frac{6 \,{\left (a c^{2} d^{5} e^{3} - 2 \, a^{2} c d^{3} e^{5} + a^{3} d e^{7}\right )}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )} x - \frac{c^{3} d^{8} - 5 \, a c^{2} d^{6} e^{2} + 7 \, a^{2} c d^{4} e^{4} - 3 \, a^{3} d^{2} e^{6}}{c^{4} d^{8} - 4 \, a c^{3} d^{6} e^{2} + 6 \, a^{2} c^{2} d^{4} e^{4} - 4 \, a^{3} c d^{2} e^{6} + a^{4} e^{8}}\right )}}{3 \,{\left (c d x^{2} e + a d e +{\left (c d^{2} + a e^{2}\right )} x\right )}^{\frac{3}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^2/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")

[Out]

2/3*(((2*(c^3*d^5*e^3 - 2*a*c^2*d^3*e^5 + a^2*c*d*e^7)*x/(c^4*d^8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 - 4*a^
3*c*d^2*e^6 + a^4*e^8) + 3*(c^3*d^6*e^2 - a*c^2*d^4*e^4 - a^2*c*d^2*e^6 + a^3*e^8)/(c^4*d^8 - 4*a*c^3*d^6*e^2
+ 6*a^2*c^2*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8))*x + 6*(a*c^2*d^5*e^3 - 2*a^2*c*d^3*e^5 + a^3*d*e^7)/(c^4*d^8
 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8))*x - (c^3*d^8 - 5*a*c^2*d^6*e^2 + 7*a^2*c*
d^4*e^4 - 3*a^3*d^2*e^6)/(c^4*d^8 - 4*a*c^3*d^6*e^2 + 6*a^2*c^2*d^4*e^4 - 4*a^3*c*d^2*e^6 + a^4*e^8))/(c*d*x^2
*e + a*d*e + (c*d^2 + a*e^2)*x)^(3/2)